Transformer Rectifier Filter Regulator

1.

1) :

Vm/	2Vm/	2Vm/
Vm/2	$\frac{Vm}{\sqrt{2}}$	<u>Vm</u> √2
/ =1.21	0.482	0.482
(-)/		
0.406	0.812	0.812
Vm	2Vm	Vm

★ 맥동률 =
$$\sqrt{\left(\frac{Vm/2}{Vm/\pi}\right)^2-1}$$

* 정류효율=
$$\frac{ 초대효율}{1+(R_f/R_L)}$$

2

가

가 ()

가

3)

2.

▶ 개 정수의 의미

출력단략의입력임파던스 $\rightarrow h_i$ 입력개방역방향전압비(전압궤환율) $\rightarrow h_i$ 출력단략순방향전류비(전류증폭률) $\rightarrow h_i$ 입력개방출력어드미턴스 $\rightarrow h_o$

▶
$$h$$
 정수의 전류이득 A_i =- $\frac{h_f}{1+h_o R_L}$

(CE) 전류이득
$$A_i$$
=- $\frac{h_{fe}}{1+h_{oe}R_L}$, 전압이득 A_v = $\frac{-h_{fe}R_L}{h_{ie}}$ 가 CE

입력저항
$$R_i$$
= h_{ie} + $(1+h_{fe})R_e$, 전압이득 A_v = $\frac{-h_{fe}R_L}{h_{ie}$ + $(1+h_{fe})R_e}$

입력저항
$$R_i$$
= h_{ie} + $(1+h_{fe})R_L$, 출력저항 R_o = $\frac{R_S+h_{ie}}{1+h_{fe}}$

BJT

CE	СВ	CC
中	小	大
中	大	小
大	大	小
大	小	大
大	中	小

2)

3)

$$ightharpoonup$$
 한성계부 $S=1+\beta$

> 콜렉터 대 베이스 바이어스 회로 $S=\frac{1+\beta}{1+\beta}\frac{R_c}{R_c+R_b}$

$$ightharpoonup$$
 전류 계환 바이어스 회로 $S = \frac{1+\beta}{1+\beta} \frac{R_e}{R_b + R_e}$

4)

▶ 여차단 주파수
$$f_0 = \frac{D_P}{\pi W_b^2}$$

$$\blacktriangleright$$
 $f_{\mathfrak{a}}$ 와 $f_{\mathfrak{b}}$ 의 관계 f_{T} = $\mathfrak{a}f_{\mathfrak{a}}$ = $\mathfrak{b}f_{\mathfrak{b}}$

 f_T : CE 출력을 단락했을 때 전류이득이 1 이 되는 주파수

5)

▶ 궤환시 이득
$$A_f = \frac{A}{1 + AB}$$

- ① 이득이 감소한다.
- ② 주파수 특성이 개선: 대역폭이 증가한다.
- ② 미득의 만정
- Φ 의곡이 감소 $D_f = \frac{D}{1 + A\beta}$
- ⑤ 잡음의 감소

가	가	
	가	가

▶ 고역 차단 주파수 f_{HF}=(1+βA)f_H

6)

А	В	С	AB
θ=360°	θ=180°	θ≺180°	180° ≺θ≺360°
		가 가	
	Push-pull		

▶ **트랜스 결합 A급 전력 증폭 회로(**최대콜렉터효율 和_{Creex}=50[%])

콜렉터실효부하저항
$$R_{L^{'}}$$
= n^2R_L , 최대출력전력 $P_{Omesc(ac)}=rac{|V_{CC}|^2}{2R_{L^{'}}}$

В

SEPP

3.

1) ▶발진이 일어나기 위해서는 정계환 이어야 한다.

- ▶바크하무젠의 발진 조건 Aβ=일정
- ▶하아틀레이 발진 주파수 $f=rac{1}{2\pi\sqrt{(L_1+L_2+2M)C}}$
- ▶콜핏츠 발진 주파수 $f=\frac{1}{2\pi\sqrt{L\left(\frac{C_1C_2}{C_1+C_2}\right)}}$

- $f = \frac{1}{2\pi\sqrt{6}RC}$ ▶ 이상형 RC 발진기의 발진 주파수(R이 병렬) (C) 병렬) $f = \frac{\sqrt{6}}{2\pi RC}$
- ▶ 수정편의 등가 회로와 리액턴스의 주파수 특성
 - \bigcirc $f_s \leq f \leq f_o$ 인 주파수 범위가 좁아서수정 발진기의 발진 주파수가 매우 안정하다.
 - ② ②가 매우 높다. 따라서 주파수 안정도가 좋다.
 - ② 유도성 주파수 범위가 대단히 좁다.

가 .
가 ,

4.

1)

- ►점유 주파수 대역폭 B=2f_s
- ightharpoonup 상축파, 하측파 전력 $P=rac{m_a^2}{4}P_c$
- ▶피변조파 평균 전력 $P_m = \left(1 + \frac{m_a^2}{2}\right) P_c$

▶변조도
$$m_a = \sqrt{2\left(\left(\frac{I_m}{I_c}\right)^2 - 1\right)}$$

= ,
: SSB

Diagonal clipping : RC가 가

- ▶자승 검파시의 의율 $D = \frac{m}{4} \times 100 [\%]$
- i_m=(I_c+I_s)cos ω_ct = $I_c(1 + m_a \cos \omega_s t) \cos \omega_c t$

※주파수변조(FN)

▶FM의 대역폭 $B=2(1+m_f)f_{\scriptscriptstyle B}$ (변조지수 $m_f=\frac{\triangle f}{f_{\scriptscriptstyle B}}$)

► FN ----> PN ----> FN 미분 적분 FM ·

(-): S/N

-	
1	1/2

PLL:

(PC)

(LF)

VCO

PLL : FM, AM ,

FM : ,

, Foster - Seeley,

2)

: PAM, PDM, PWM, PPM, PTM : PCM, PNM, M, DPCM

5.

1) AE

▶ 충격계수 $D = \frac{\tau}{T}$

▶ 상승시간 T,=2,2RC

▶ RC회로의 과도 현상(충전의 경무)

 Φ 면 단자 전압 $v_R = V_e^{-\frac{I}{RC}}$

 $_{\mathcal{V}_{C}}$ 안 안자 전압 $_{\mathcal{V}_{C}}$ $_{\mathcal{V}_{C}}$

▶ RC회로의 과도 현상(방전의 경무)

$$v_R = -V e^{-\frac{t}{RC}}$$

$$v_C^{-}Ve^{-\frac{t}{RC}}$$

:

:

:

plus clamper: plus minus clamper: minus 가 clamper

2)

· AC

· 주기 T=0,693(C ₁ R_{B1}+ C ₂ R_{B2})

· AC - DC

```
T = CR \ln 2 = 0.693 CR
    ・DC
・가 :
3)Schmitt
· :
6.
1)
-BCD
           :8421
           :2-OUT-OF-5 , 5111 ,
:Biquinary , Ring-counter
:1 0 가
  .3
   .5
2)
  ·Karnaugh mapping
3)
·RS
  ∙JK
∙T
  ٠D
7.
1)
   ·Karnaugh
   ·Karnaugh
2)
   가
·X - OR 1 AND
                        1
   . 가
. 가
           2 OR
```

:

2 "